Development of BOLD signal hemodynamic responses in the human brain
نویسندگان
چکیده
In the rodent brain the hemodynamic response to a brief external stimulus changes significantly during development. Analogous changes in human infants would complicate the determination and use of the hemodynamic response function (HRF) for functional magnetic resonance imaging (fMRI) in developing populations. We aimed to characterize HRF in human infants before and after the normal time of birth using rapid sampling of the blood oxygen level dependent (BOLD) signal. A somatosensory stimulus and an event related experimental design were used to collect data from 10 healthy adults, 15 sedated infants at term corrected post menstrual age (PMA) (median 41+1 weeks), and 10 preterm infants (median PMA 34+4 weeks). A positive amplitude HRF waveform was identified across all subject groups, with a systematic maturational trend in terms of decreasing time-to-peak and increasing positive peak amplitude associated with increasing age. Application of the age-appropriate HRF models to fMRI data significantly improved the precision of the fMRI analysis. These findings support the notion of a structured development in the brain's response to stimuli across the last trimester of gestation and beyond.
منابع مشابه
Modeling the hemodynamic response to brain activation.
Neural activity in the brain is accompanied by changes in cerebral blood flow (CBF) and blood oxygenation that are detectable with functional magnetic resonance imaging (fMRI) techniques. In this paper, recent mathematical models of this hemodynamic response are reviewed and integrated. Models are described for: (1) the blood oxygenation level dependent (BOLD) signal as a function of changes in...
متن کاملDetermining Excitatory and Inhibitory Neuronal Activity from Multimodal fMRI Data Using a Generative Hemodynamic Model
Hemodynamic responses, in general, and the blood oxygenation level-dependent (BOLD) fMRI signal, in particular, provide an indirect measure of neuronal activity. There is strong evidence that the BOLD response correlates well with post-synaptic changes, induced by changes in the excitatory and inhibitory (E-I) balance between active neuronal populations. Typical BOLD responses exhibit transient...
متن کاملPoststimulus undershoots in cerebral blood flow and BOLD fMRI responses are modulated by poststimulus neuronal activity.
fMRI is the foremost technique for noninvasive measurement of human brain function. However, its utility is limited by an incomplete understanding of the relationship between neuronal activity and the hemodynamic response. Though the primary peak of the hemodynamic response is modulated by neuronal activity, the origin of the typically negative poststimulus signal is poorly understood and its a...
متن کاملResolving the transition from negative to positive blood oxygen level-dependent responses in the developing brain.
The adult brain exhibits a local increase in cortical blood flow in response to external stimulus. However, broadly varying hemodynamic responses in the brains of newborn and young infants have been reported. Particular controversy exists over whether the "true" neonatal response to stimulation consists of a decrease or an increase in local deoxyhemoglobin, corresponding to a positive (adult-li...
متن کاملEEG AND BOLD-CONTRAST fMRI IN BRAIN Cerebrovascular reactivity, suppression of neuronal activity, global and local brain injury
The purpose of the present study was to gain more insight into the blood oxygen level-dependent (BOLD)-contrast functional MRI (fMRI) in the brain and its connection to EEG, both in global and local scales of their temporal and spatial relations. BOLD signal changes were studied during hyperventilation (HV) induced EEG reactivity of intermittent rhythmic delta activity (IRDA). The BOLD signal i...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 63 شماره
صفحات -
تاریخ انتشار 2012